login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136747
Expansion of a(q)^2 * (b(q) * c(q) / 3)^3 in powers of q where a(), b(), c() are cubic AGM theta functions.
2
1, 6, -27, -92, 390, -162, -64, -1320, 729, 2340, -948, 2484, -5098, -384, -10530, 3856, 28386, 4374, -8620, -35880, 1728, -5688, -15288, 35640, 73975, -30588, -19683, 5888, 36510, -63180, -276808, 192096, 25596, 170316, -24960, -67068, 268526, -51720, 137646
OFFSET
1,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.] See page 30, line -3.
FORMULA
Expansion of (eta(q) * eta(q^3))^6 * ((eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3))^2 in powers of q.
a(n) is multiplicative with a(3^e) = (-27)^e, a(p^e) = a(p) * a(p^(e-1)) - p^7 * a(p^(e-2)) unless p = 3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^4*w + 512*u^3*w^2 + 131072*u^2*w^3 + 16777216*u*w^4 - 24*u^3*v*w - 9216*u^2*v*w^2 - 1572864*u*v*w^3 + 288*u^2*v^2*w + 73728*u*v^2*w^2 - u^2*v^3 - 1984*w*v^3*u - 65536*w^2*v^3 + 12*v^4*u + 3072*w*v^4 - 36*v^5.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 81 (t/i)^8 f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(3*k)))^6 * (Sum_{j,k in Z} x^(j*j + j*k + k*k))^2.
Convolution of A007332 and A008653.
EXAMPLE
G.f. = q + 6*q^2 - 27*q^3 - 92*q^4 + 390*q^5 - 162*q^6 - 64*q^7 - 1320*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^3])^6 ((QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3])^2, {q, 0, n}]; (* Michael Somos, May 28 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^6 * sum(k=1, n, 12 * (sigma(3*k) - 3 * sigma(k)) * x^k, 1 + A), n))};
(Sage) CuspForms( Gamma0(3), 8, prec=40).0; # Michael Somos, May 28 2013
(Magma) Basis( CuspForms( Gamma0(3), 8), 40)[1]; /* Michael Somos, Oct 12 2015 */
CROSSREFS
Sequence in context: A264026 A341385 A344100 * A278357 A001940 A320049
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jan 20 2008
STATUS
approved