login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136663
Triangle of coefficients of the Pascal sum of A053120 Chebyshev's T(n, x) polynomials :p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}].
1
1, 1, 1, 0, 2, 2, -2, 0, 6, 4, -4, -8, 4, 16, 8, -4, -20, -20, 20, 40, 16, 0, -24, -72, -40, 72, 96, 32, 8, 0, -112, -224, -56, 224, 224, 64, 16, 64, -32, -448, -624, 0, 640, 512, 128, 16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256, 0, 160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512
OFFSET
1,5
COMMENTS
Row sums:
{1, 0, -2, -6, -14, -30, -62, -126, -254, -510, -1022}
FORMULA
p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}]
EXAMPLE
{1},
{1, 1},
{0, 2, 2},
{-2, 0, 6, 4},
{-4, -8, 4, 16, 8},
{-4, -20, -20, 20, 40, 16},
{0, -24, -72, -40, 72, 96, 32},
{8, 0, -112, -224, -56, 224, 224, 64},
{16, 64, -32, -448, -624, 0, 640, 512, 128},
{16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256},
{0,160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512}
MATHEMATICA
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := Q[x, n] = Sum[P[x, m]*Binomial[n, m], {m, 0, n}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Cf. A053120.
Sequence in context: A082835 A104241 A011139 * A165490 A298819 A307520
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Apr 02 2008
STATUS
approved