|
|
A136543
|
|
Numbers n such that phi(n)+sigma(n)=4*reversal(n).
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All semiprimes of the form 8*10^m-7 are in the sequence - the proof is easy. Next term is greater than 10^8.
a(7) > 10^12. - Giovanni Resta, Nov 03 2012
A100412(n) is in the sequence for n = 2, 4, 7, 9, 11, 16, 18, 23, 31, 32, 40,... - M. F. Hasler, Nov 03 2012
|
|
LINKS
|
Table of n, a(n) for n=1..6.
|
|
EXAMPLE
|
phi(2152311)+sigma(2152311)=1217664+3312384=4*1132512=4*reversal(2152311), so 2152311 is in the sequence.
|
|
MATHEMATICA
|
Do[If[4*FromDigits@Reverse@IntegerDigits@n==EulerPhi@n+ DivisorSigma[1, n], Print[n]], {n, 100000000}]
|
|
CROSSREFS
|
Sequence in context: A133537 A213471 A075667 * A133274 A261657 A086393
Adjacent sequences: A136540 A136541 A136542 * A136544 A136545 A136546
|
|
KEYWORD
|
base,more,nonn
|
|
AUTHOR
|
Farideh Firoozbakht, Jan 20 2008
|
|
EXTENSIONS
|
a(5)-a(6) from Giovanni Resta, Nov 03 2012
|
|
STATUS
|
approved
|
|
|
|