login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternate terms of A001263 as polynomials divided by x+1 to give a new triangle of coefficients of even powered polynomials.
0

%I #5 Aug 09 2015 01:42:59

%S 1,1,5,1,1,14,36,14,1,1,27,169,321,169,27,1,1,44,496,2024,3268,2024,

%T 496,44,1,1,65,1145,7930,24740,36244,24740,7930,1145,65,1,1,90,2276,

%U 23750,119393,310036,426128,310036,119393,23750,2276,90,1,1,119,4081,59619

%N Alternate terms of A001263 as polynomials divided by x+1 to give a new triangle of coefficients of even powered polynomials.

%C Row sums are:

%C Table[Apply[Plus, CoefficientList[Factor[a[[n]]]/(x + 1), x]], {n, 2, Length[a], 2}];

%C {1, 7, 66, 715, 8398, 104006, 1337220, 17678835, 238819350, 3282060210}.

%C This sequence was found while looking into _Gary W. Adamson_'s comment on A001263.

%F T(n,m) = Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m p(x,n)=Sum[t(n,m)^x^(m-1),{m,1,n}]/(x+1): {n,2,limit,skip one}

%e {1},

%e {1, 5, 1},

%e {1, 14, 36, 14, 1},

%e {1, 27, 169, 321, 169, 27, 1},

%e {1, 44, 496, 2024, 3268, 2024, 496, 44, 1},

%e {1, 65, 1145, 7930, 24740, 36244, 24740, 7930, 1145, 65, 1},

%e {1, 90, 2276, 23750, 119393, 310036, 426128, 310036, 119393, 23750, 2276, 90,1},

%e {1, 119, 4081, 59619, 437241, 1748943, 3976777, 5225273, 3976777, 1748943,437241, 59619, 4081, 119, 1},

%e {1, 152, 6784, 131936, 1324624, 7511840, 25309312, 52054832, 66140388, 52054832, 25309312, 7511840, 1324624, 131936, 6784, 152, 1},

%e {1, 189, 10641, 265524, 3490320, 26556432, 123677328, 364582392, 693313668, 858267220, 693313668, 364582392, 123677328, 26556432, 3490320, 265524, 10641, 189, 1}

%t T[n_, m_] := Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m; a = Table[Apply[Plus, Table[T[n, m]*x^(m - 1), {m, 1, n}]], {n, 1, 20}]; Table[Factor[a[[n]]]/(x + 1), {n, 2, Length[a], 2}]; b = Table[CoefficientList[Factor[a[[n]]]/(x + 1), x], {n, 2, Length[a], 2}]; Flatten[b]

%Y Cf. A001263.

%K nonn,uned,tabf

%O 1,3

%A _Roger L. Bagula_ and _Gary W. Adamson_, Mar 18 2008