login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136201
a(n) = 2*a(n-1) + 4*a(n-2) - 6*a(n-3) - 3*a(n-4).
1
0, 0, 0, 1, 2, 8, 18, 53, 124, 328, 780, 1969, 4718, 11648, 28014, 68405, 164824, 400240, 965304, 2337409, 5640122, 13637336, 32914794, 79525973, 191966740, 463636600, 1119239940, 2702647921, 6524535782, 15753313808, 38031163398
OFFSET
0,5
COMMENTS
Based on a Pell recurrence.
FORMULA
A137255(n+1) - 2*A137255(n), same recurrence.
a(n) = (-A108411(n) + A001333(n))/4. - R. J. Mathar, Apr 01 2008
a(n) = (1/8)*(1+sqrt(2))^n + (1/8)*(1-sqrt(2))^n + (1/24)*3^(n/2)*(-3 - sqrt(3) - 3(-1)^n + (-1)^n*sqrt(3)). - Emeric Deutsch, Mar 31 2008
G.f.: x^3/(3*x^4 + 6*x^3 - 4*x^2 - 2*x + 1). - Alexander R. Povolotsky, Mar 31 2008
MAPLE
a:=proc(n) options operator, arrow: expand((1/8)*(1+sqrt(2))^n+(1/8)*(1-sqrt(2))^n+(1/24)*3^((1/2)*n)*(-3-sqrt(3)-3*(-1)^n+(-1)^n*sqrt(3))) end proc: seq(a(n), n=0..30); # Emeric Deutsch, Mar 31 2008
MATHEMATICA
LinearRecurrence[{2, 4, -6, -3}, {0, 0, 0, 1}, 50] (* G. C. Greubel, Feb 23 2017 *)
CoefficientList[Series[x^3/(1-2 x-4 x^2+6 x^3+3 x^4), {x, 0, 50}], x] (* Harvey P. Dale, Apr 21 2022 *)
PROG
(PARI) x='x+O('x^50); Vec(x^3/(3*x^4 + 6*x^3 - 4*x^2 - 2*x + 1)) \\ G. C. Greubel, Feb 23 2017
CROSSREFS
Sequence in context: A267638 A153335 A119853 * A358907 A058082 A005675
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 16 2008
STATUS
approved