OFFSET
0,5
COMMENTS
Based on a Pell recurrence.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,4,-6,-3).
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (1/8)*(1+sqrt(2))^n + (1/8)*(1-sqrt(2))^n + (1/24)*3^(n/2)*(-3 - sqrt(3) - 3(-1)^n + (-1)^n*sqrt(3)). - Emeric Deutsch, Mar 31 2008
G.f.: x^3/(3*x^4 + 6*x^3 - 4*x^2 - 2*x + 1). - Alexander R. Povolotsky, Mar 31 2008
MAPLE
a:=proc(n) options operator, arrow: expand((1/8)*(1+sqrt(2))^n+(1/8)*(1-sqrt(2))^n+(1/24)*3^((1/2)*n)*(-3-sqrt(3)-3*(-1)^n+(-1)^n*sqrt(3))) end proc: seq(a(n), n=0..30); # Emeric Deutsch, Mar 31 2008
MATHEMATICA
LinearRecurrence[{2, 4, -6, -3}, {0, 0, 0, 1}, 50] (* G. C. Greubel, Feb 23 2017 *)
CoefficientList[Series[x^3/(1-2 x-4 x^2+6 x^3+3 x^4), {x, 0, 50}], x] (* Harvey P. Dale, Apr 21 2022 *)
PROG
(PARI) x='x+O('x^50); Vec(x^3/(3*x^4 + 6*x^3 - 4*x^2 - 2*x + 1)) \\ G. C. Greubel, Feb 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 16 2008
STATUS
approved