login
A135930
Primes whose integer square root is also prime.
1
5, 7, 11, 13, 29, 31, 53, 59, 61, 127, 131, 137, 139, 173, 179, 181, 191, 193, 293, 307, 311, 313, 317, 367, 373, 379, 383, 389, 397, 541, 547, 557, 563, 569, 571, 853, 857, 859, 863, 877, 881, 883, 887, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021
OFFSET
1,1
COMMENTS
The integer square root of an integer x >= 0 can be defined as floor(sqrt(x)) and the remainder of this as x - (floor(sqrt(x)))^2.
LINKS
MAPLE
map(p -> select(isprime, [$p^2+1..(p+1)^2-1]), [seq(ithprime(i), i=1..10)]); # Robert Israel, Jun 08 2018
MATHEMATICA
f[n_]:=PrimeQ[IntegerPart[Sqrt[n]]]; lst={}; Do[p=Prime[n]; If[f[p], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 12 2009 *)
Select[Prime[Range[200]], PrimeQ[IntegerPart[Sqrt[#]]]&] (* Harvey P. Dale, Jun 23 2016 *)
PROG
(PARI) { forprime(p=2, 2000, isr = sqrtint(p); if (isprime(isr), print1(p, ", ") ) ) }
CROSSREFS
Cf. A000196 (integer square root).
Sequence in context: A135774 A180946 A265006 * A163429 A339953 A220951
KEYWORD
nonn
AUTHOR
Harry J. Smith, Dec 07 2007
STATUS
approved