OFFSET
0,7
REFERENCES
C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc., 10 (1997), 139-167. [See D(y) on p. 158.]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ 11*2^(2*n-13)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
Conjecture D-finite with recurrence: +4*(n-1)*(7678757997599*n-100709801435251)*a(n) +(-291262905844111*n^2+4745710679447853*n-12935393149282124)*a(n-1) +3*(268523622217993*n^2-4978734571371597*n+20251709258114720)*a(n-2) +2*(-196528865827703*n^2+4147266222561252*n-21888137659762186)*a(n-3) -12*(22463548140013*n-247087251730058)*(2*n-25)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
MAPLE
S:=sqrt(1-4*y); Dy:=(y^2+y-1)*(1+2*y+S)*(1-5*y+2*y^2+(3*y-1)*S)^2*(-1+3*y+2*y^2+(1-y)*S);
MATHEMATICA
CoefficientList[Series[(x^2 + x - 1) (1 + 2 x + Sqrt[1 - 4 x]) (1 - 5 x + 2 x^2 + (3 x - 1) Sqrt[1 - 4 x])^2 (-1 + 3 x + 2 x^2 + (1 - x) Sqrt[1 - 4 x]), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 30 2016 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 09 2008
STATUS
approved