login
A135884
Column 3 of triangle A135880.
5
1, 4, 26, 216, 2171, 25628, 348050, 5352788, 92056223, 1752149568, 36591725976, 832352590164, 20493399785598, 543168774618834, 15424012639825146, 467276557333020682, 15046702103550879196, 513273141160665106150
OFFSET
0,2
EXAMPLE
Equals column 3 of triangle P=A135880:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1;
8390, 16220, 8057, 2171, 400, 57, 7, 1; ...
where column k of P^2 equals column 0 of P^(2k+2)
such that column 0 of P^2 equals column 0 of P shift left.
PROG
(PARI) {a(n)=local(P=Mat(1), R, PShR); if(n==0, 1, for(i=0, n+2, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); R=P*PShR; R=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, R[r, c], if(c==1, (P^2)[ #P, 1], (P^(2*c-1))[r-c+1, 1])))); P=matrix(#R, #R, r, c, if(r>=c, if(r<#R, P[r, c], (R^c)[r-c+1, 1])))); P[n+4, 4])}
CROSSREFS
Cf. A135880; other columns: A135881, A135882, A135883.
Sequence in context: A048351 A224734 A143436 * A364973 A120971 A187826
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2007
STATUS
approved