|
|
A135845
|
|
Prime numbers p not of the form 10k+1 for which the quintic polynomial x^5-x-1 modulus p is factorizable into five binomials.
|
|
4
|
|
|
1973, 3769, 7727, 11903, 14629, 16903, 17737, 18097, 19477, 20747, 20759, 21727, 22717, 23567, 25037, 27397, 27529, 28279, 29207, 29959, 30497, 31319, 33289, 36097, 37463, 42139, 42487, 42689, 45959, 46229, 47309, 47969, 48847, 48947
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is a subsequence of A135844.
|
|
LINKS
|
|
|
MAPLE
|
filter:= proc(p) isprime(p) and nops([msolve(x^5-x-1, p)])=5 end proc:
select(filter, [seq(seq(10*k+j, j=[3, 7, 9]), k=0..10000)]); # Robert Israel, Jul 03 2018
|
|
MATHEMATICA
|
a = {}; Do[If[Mod[Prime[n], 1, poly = PolynomialMod[x^5 - x - 1, Prime[n]]; c = FactorList[poly, Modulus -> Prime[n]]; If[Sum[c[[m]][[2]], {m, 1, Length[c]}] == 6, AppendTo[a, Prime[n]]]], {n, 1, 10000}]; a
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|