The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135842 Prime numbers p of the form 10k+1 for which the quintic polynomial x^5-x-1 modulus p is factorizable into five binomials. 6
 5101, 8161, 9631, 17921, 26681, 31091, 39161, 39671, 40151, 41491, 43331, 44171, 44221, 48541, 75821, 77951, 84391, 94531, 109391, 111521, 113891, 114661, 117511, 118081, 124121, 132241, 141241, 144511, 156371, 160231, 161771, 167381, 174481, 178951, 184321, 184511, 186871, 187091, 204301 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS According to class field theory each quintic polynomial is completely reducible mod some prime number p of the form 10k+1. REFERENCES S. Kobayashi & H. Nakagawa, Resolution of Solvable Quintic Equation, Math. Japonica Vol. 87, No 5 (1992), pp. 883-886. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 MATHEMATICA a = {}; Do[If[PrimeQ[10n + 1], poly = PolynomialMod[x^5 - x - 1, 10n + 1]; c = FactorList[poly, Modulus -> 10n + 1]; If[Sum[c[[m]][[2]], {m, 1, Length[c]}] == 6, AppendTo[a, 10n + 1]]], {n, 1, 10000}]; a CROSSREFS Cf. A135843. Sequence in context: A260069 A252143 A223400 * A224492 A330730 A343081 Adjacent sequences:  A135839 A135840 A135841 * A135843 A135844 A135845 KEYWORD nonn AUTHOR Artur Jasinski, Dec 01 2007 EXTENSIONS Terms a(19) and beyond from G. C. Greubel, Dec 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 09:09 EDT 2022. Contains 354112 sequences. (Running on oeis4.)