OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(q) * phi(q^3))^3 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^6))^15 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12))^6 in powers of q.
Euler transform of period 12 sequence [ 6, -9, 12, -3, 6, -18, 6, -3, 12, -9, 6, -6, ...].
G.f. is a period-1 Fourier series which satisfies f(-1 / (12 t)) = 1728^(1/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: (( Sum_{k in Z} x^(k^2) ) * ( Sum_{k in Z} x^(3*k^2) ))^3.
EXAMPLE
G.f. = 1 + 6*q + 12*q^2 + 14*q^3 + 42*q^4 + 96*q^5 + 84*q^6 + 108*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3])^3, {q, 0, n}]; (* Michael Somos, Oct 15 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^15 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A))^6, n))};
(Magma) A := Basis( ModularForms( Gamma1(12), 3), 48); A[1] + 6*A[2] + 12*A[3] + 14*A[4] + 42*A[5] + 96*A[6] + 84*A[7] + 108*A[8] + 300*A[9] + 278*A[10] + 144*A[11] + 480*A[12] + 546*A[13]; /* Michael Somos, Oct 15 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 28 2007
STATUS
approved