login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135763
Expansion of (theta_3(q) * theta_3(q^3))^3 in powers of q.
1
1, 6, 12, 14, 42, 96, 84, 108, 300, 278, 144, 480, 546, 252, 600, 672, 618, 1152, 732, 828, 2016, 1276, 720, 2112, 2100, 1302, 2040, 2078, 2100, 3360, 1872, 1740, 4908, 3360, 1728, 4800, 5082, 2844, 4344, 4684, 3600, 6720, 4200, 3612, 10080, 5856, 3168, 8832
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(q) * phi(q^3))^3 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^6))^15 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12))^6 in powers of q.
Euler transform of period 12 sequence [ 6, -9, 12, -3, 6, -18, 6, -3, 12, -9, 6, -6, ...].
G.f. is a period-1 Fourier series which satisfies f(-1 / (12 t)) = 1728^(1/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: (( Sum_{k in Z} x^(k^2) ) * ( Sum_{k in Z} x^(3*k^2) ))^3.
EXAMPLE
G.f. = 1 + 6*q + 12*q^2 + 14*q^3 + 42*q^4 + 96*q^5 + 84*q^6 + 108*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3])^3, {q, 0, n}]; (* Michael Somos, Oct 15 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^15 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A))^6, n))};
(Magma) A := Basis( ModularForms( Gamma1(12), 3), 48); A[1] + 6*A[2] + 12*A[3] + 14*A[4] + 42*A[5] + 96*A[6] + 84*A[7] + 108*A[8] + 300*A[9] + 278*A[10] + 144*A[11] + 480*A[12] + 546*A[13]; /* Michael Somos, Oct 15 2015 */
CROSSREFS
Sequence in context: A292289 A281352 A351843 * A030659 A142338 A114304
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 28 2007
STATUS
approved