login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135746
E.g.f.: A(x) = Sum_{n>=0} exp(n^2*x) * x^n/n!.
9
1, 1, 3, 16, 137, 1536, 22417, 407884, 8920641, 230576320, 6928080641, 238375169484, 9288784476193, 406150114297552, 19761959813464065, 1062437048084297596, 62727815353861478273, 4045278841893314992896
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*(k^2)^(n-k).
O.g.f.: Sum_{n>=0} x^n/(1 - n^2*x)^(n+1). - Paul D. Hanna, Aug 08 2009
a(n) ~ n^(n + 1/2) * r^(2*n - 3*r + 1/2) / (sqrt(2*n + 3*r) * (n - r)^(n - r + 1/2)), where r = (n/w) * (1 + (w-1)/((2*w^2 + w - 2)/log(w-1) - w + 2)) and w = LambertW(exp(1)*n). - Vaclav Kotesovec, Jul 05 2022
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 137*x^4/4! + 1536*x^5/5! + ...
where A(x) = 1 + exp(x)*x + exp(4*x)*x^2/2! + exp(9*x)*x^3/3! + exp(16*x)*x^4/4! + exp(25*x)*x^5/5! + ...
O.g.f.: F(x) = 1 + x + 3*x^2 + 16*x^3 + 137*x^4 + 1536*x^5 + 22417*x^6 + ...
where F(x) = 1 + x/(1-x)^2 + x^2/(1-4*x)^3 + x^3/(1-9*x)^4 + x^4/(1-16*x)^5 + x^5/(1-25*x)^6 + ...
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*k^(2*(n - k)), {k, 0, n}], {n, 1, 25}]}] (* G. C. Greubel, Nov 05 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(k^2)^(n-k))}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp(k^2*x +x*O(x^n))*x^k/k!), n)}
(PARI) {a(n)=polcoeff(sum(k=0, n, x^k/(1-k^2*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Aug 08 2009
CROSSREFS
Cf. A000248.
Sequence in context: A357088 A277673 A335356 * A368293 A345349 A230320
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2007
STATUS
approved