login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135399
a(n) = (-1)^n + (-2)^n + 3^n (-1, -2 and 3 are the roots of the equation x^3 = 7*x + 6).
1
3, 0, 14, 18, 98, 210, 794, 2058, 6818, 19170, 60074, 175098, 535538, 1586130, 4799354, 14316138, 43112258, 129009090, 387682634, 1161737178, 3487832978, 10458256050, 31385253914, 94134790218, 282446313698, 847255055010, 2541932937194, 7625463267258
OFFSET
0,1
COMMENTS
seq(a(3*n+2)/14, n=0..9) = 1, 15, 487, 12507, 342811, 9214935, 249130927, 6723913587, 181566638371, 4902131463855
seq(a(3*n+1)/98, n=0..9) = 0, 1, 21, 613, 16185, 439921, 11854461, 320257693, 8645459745, 233439396841
seq(a(2*n+1)/6, n=0..14) = 0, 3, 35, 343, 3195, 29183, 264355, 2386023, 21501515, 193622863, 1743042675, 15689131703, 141209175835, 1270910544543, 11438306748995
seq(a(6*n+1)/294, n=0..4) = 0, 7, 5395, 3951487, 2881819915
FORMULA
G.f.: (3 - 7*x^2)/(1-7*x^2-6*x^3).
E.g.f.: exp(-x) + exp(-2*x) + exp(3*x)
a(0)=3, a(1)=0, a(2)=14, a(n) = 7*a(n-2) + 6*a(n-3). - Harvey P. Dale, Oct 18 2015
EXAMPLE
a(3) = (-1)^3 + (-2)^3 + 3^3 = -1 - 8 + 27 = 18.
MATHEMATICA
Table[(-1)^n+(-2)^n+3^n, {n, 0, 30}] (* or *) LinearRecurrence[{0, 7, 6}, {3, 0, 14}, 30] (* Harvey P. Dale, Oct 18 2015 *)
PROG
(PARI) a(n)=(-1)^n + (-2)^n + 3^n \\ Charles R Greathouse IV, Oct 12 2016
CROSSREFS
Sequence in context: A369918 A323689 A321413 * A275831 A065121 A334824
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Dec 11 2007
STATUS
approved