%I #11 Sep 08 2022 08:45:32
%S 1,1,1,1,1,1,1,2,2,1,1,2,4,3,1,1,3,6,7,4,1,1,3,9,13,11,5,1,1,4,12,22,
%T 24,16,6,1,1,4,16,34,46,40,22,7,1,1,5,20,50,80,86,62,29,8,1
%N Triangle A000012(signed) * A103451 * A007318, read by rows.
%C row sums = A005578 starting (1, 2, 3, 6, 11, 22, 43, 86, ...).
%H G. C. Greubel, <a href="/A135229/b135229.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,k) = A000012(signed) * A103451 * A007318 as infinite lower triangular matrices, where A000012(signed) = (1; -1,1; 1,-1,1; ...).
%F T(n,k) = Sum_{j=0..floor((n-1)/2)} binomial(n-2*j-1, k-1), with T(n,0) = 1. - _G. C. Greubel_, Nov 20 2019
%e First few rows of the triangle are:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 2, 2, 1;
%e 1, 2, 4, 3, 1;
%e 1, 3, 6, 7, 4, 1;
%e 1, 3, 9, 13, 11, 5, 1;
%e 1, 4, 12, 22, 24, 16, 6, 1;
%e 1, 4, 16, 34, 46, 40, 22, 7, 1;
%e ...
%p T:= proc(n, k) option remember;
%p if k=0 then 1
%p else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2))
%p fi; end:
%p seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Nov 20 2019
%t T[n_, k_]:= T[n, k]= If[k==0, 1, Sum[Binomial[n-1-2*j, k-1], {j, 0, Floor[(n-1)/2]}]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *)
%o (PARI) T(n,k) = if(k==0, 1, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) ); \\ _G. C. Greubel_, Nov 20 2019
%o (Magma)
%o function T(n,k)
%o if k eq 0 then return 1;
%o else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]);
%o end if; return T; end function;
%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2019
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (k==0): 1
%o else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2)))
%o [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 20 2019
%Y Cf. A005578, A007318, A103451.
%K nonn,tabl
%O 0,8
%A _Gary W. Adamson_, Nov 23 2007
%E Offset changed by _G. C. Greubel_, Nov 20 2019