login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134873
Primes p with the property that the sum of the digits of the product of the digits of p is also a prime number.
1
2, 3, 5, 7, 13, 17, 31, 37, 43, 71, 73, 113, 127, 131, 137, 151, 173, 211, 223, 257, 271, 277, 281, 311, 317, 431, 457, 523, 541, 547, 557, 577, 727, 757, 821, 853, 1117, 1151, 1171, 1187, 1217, 1223, 1277, 1427, 1451, 1481, 1511, 1523
OFFSET
1,1
LINKS
Erich Leistenschneider, Table of n, a(n) for n = 1..4095
Erich Lestenschneider's Article about this sequence (in Portuguese).
Erich Leistenschneider, First 4095 numbers of the sequence
EXAMPLE
2531 is a member of this sequence because it is a prime number and the product of its digits is 2*5*3*1 = 30 and the sum of the digits of this result is 3+0 = 3, which is also a prime number.
MAPLE
a:=proc(n) local dn, pr, dpr: dn:=convert(n, base, 10): pr:=mul(dn[i], i=1..nops(dn)): dpr:=convert(pr, base, 10): if isprime(n)=true and isprime(add(dpr[j], j= 1..nops(dpr)))=true then n else end if end proc: seq(a(n), n=1..1600); # Emeric Deutsch, Mar 01 2008
MATHEMATICA
Select[Prime[Range[300]], PrimeQ[Total[IntegerDigits[Times@@ IntegerDigits[#]]]]&] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(sumdigits(vecprod(digits(p)))); \\ Michel Marcus, Jan 16 2019
CROSSREFS
Subsequence of A038618 (zeroless primes).
Sequence in context: A009571 A087520 A117159 * A172979 A118724 A055387
KEYWORD
nonn,base
AUTHOR
Erich Leistenschneider (el(AT)erichl.net), Feb 01 2008
STATUS
approved