

A134671


Primes of the form 2m*691  1.


3



1381, 5527, 8291, 12437, 22111, 29021, 30403, 34549, 37313, 42841, 51133, 53897, 58043, 62189, 70481, 92593, 96739, 105031, 120233, 134053, 145109, 167221, 179659, 182423, 186569, 187951, 192097, 194861, 212827, 216973, 233557, 281927
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Note that all zeros of A046694(n) have the indices equal to the terms of all arithmetic progressions of the type k*p, where primes p belong to a(n). Thus A046694(k*a(n)) = 0 for all integer k > 0.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Ramanujan's Tau Function.


EXAMPLE

a(1) = 1381 = 2*691  1 is a first prime of the form 2m*691  1.


MATHEMATICA

Select[ 2*691*Range[ 1000 ]  1, PrimeQ[ # ] & ]
Select[Table[1382 n  1, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Nov 07 2014 *)


PROG

(MAGMA) [a: n in [0..250]  IsPrime(a) where a is 1382*n1]; // Vincenzo Librandi, Nov 07 2014


CROSSREFS

Cf. A046694 = Ramanujan tau numbers mod 691 = sum of 11th power of divisors mod 691.
Cf. A121733 = Numbers n such that two consecutive Ramanujan tau numbers are congruent mod 691.
Cf. A121734 = Ramanujan tau numbers such that A000594[n] == A000594[n+1] mod 691.
Cf. A121742 = Numbers n such that three consecutive Ramanujan tau numbers are congruent mod 691.
Cf. A121743 = Values of the Ramanujan tau triples mod 691 such that three consecutive Ramanujan tau numbers are congruent mod 691.
Cf. A134670 = Least number k such that A046694 has a string of n consecutive zeros starting with A046694(k).
Sequence in context: A020406 A277632 A241483 * A161192 A134670 A250367
Adjacent sequences: A134668 A134669 A134670 * A134672 A134673 A134674


KEYWORD

nonn


AUTHOR

Alexander Adamchuk, Nov 05 2007


STATUS

approved



