login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134657
Numbers of the form p^2 + q^3 + r^4 with p, q and r primes.
1
28, 33, 47, 49, 52, 68, 73, 92, 93, 98, 112, 114, 117, 133, 138, 145, 150, 157, 164, 166, 190, 193, 210, 212, 215, 229, 231, 255, 258, 262, 277, 310, 313, 327, 332, 363, 368, 375, 378, 384, 385, 397, 404, 408, 428, 430, 433, 449, 450, 469, 473, 480, 495
OFFSET
1,1
COMMENTS
The primes p, q, and r are not necessarily distinct. - Jon E. Schoenfield, Sep 24 2018
EXAMPLE
a(1) = 28 = 2^2 + 2^3 + 2^4 is the smallest sum of a prime squared, a prime cubed and the 4th power of a prime.
a(2) = 33 = 3^2 + 2^3 + 2^4 is the next number of that form.
MATHEMATICA
Take[Union[Total[#^{2, 3, 4}]&/@Tuples[Prime[Range[10]], 3]], 60] (* Harvey P. Dale, Mar 02 2013 *)
PROG
(PARI) is_p87(n, t, tt)=forprime(p=2, sqrtn(n, 4), t=n-p^4; forprime(q=2, sqrtn(t, 3), issquare(t-q^3, &tt) || next; isprime(tt) && return(1)))
print_p87(Nmax=999)=for(n=1, Nmax, is_p87(n) && print1(n", "))
CROSSREFS
Cf. A045701.
Sequence in context: A090637 A261113 A280649 * A261106 A375819 A138687
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2008
STATUS
approved