login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134652
Indices for which A097344 differs from A097345.
2
59, 1519, 7814, 17225, 39079, 950619, 977019, 1280699
OFFSET
1,1
COMMENTS
The terms 59 and 1519 were found by Daniel Glasscock (glasscock(AT)rice.edu), Jan 04 2008.
a(6) > 10^5.
These are the numbers m such that f(m) = Sum_{k=0..m} binomial(m,k)/(k+1)^2 (binomial transform of 1/(k+1)^2) has the same numerator as g(m) = Sum_{k=0..m} (2^(k+1) - 1)/(k+1) (which are also the partial sums of the binomial transformation of 1/(k+1)).
Obviously, f(m) = Sum_{k=0..m} binomial(m+1, k+1)/((k+1)*(m+1)) and since g(m) = (m+1) f(m) (cf. notes by R. J. Mathar on A097345), g(m) = Sum_{k=1..m+1} binomial(m+1,k)/k.
We have the equivalences: numerator(g(n)) = numerator(f(n)) <=> (n+1) | denominator(f(n)) <=> gcd(numerator(g(n)), n+1) = 1.
Therefore this sequence can be alternatively defined in either of the following two ways: numbers n such that the denominator of f(n) is not divisible by (n+1); numbers n such that the numerator of g(n) is not coprime to (n+1).
In terms of M = m+1, the characterization reads: a(n)+1 = numbers M such that denominator(Sum_{k=1..M} binomial(M-1, k-1)/k^2) is not a multiple of M = numbers M such that numerator(Sum_{k=1..M} (2^k - 1)/k) is not coprime to M.
MATHEMATICA
Reap[ For[n = 1, n < 10^5, n++, If[ !Divisible[ Denominator[ HypergeometricPFQ[{1, 1, -n}, {2, 2}, -1]], n+1], Print[n]; Sow[n] ] ] ][[2, 1]] (* Jean-François Alcover, Oct 15 2013 *)
PROG
(PARI) t=1; for( n=2, 10^5, gcd( numerator(t+=(1<<n-1)/n), n)>1 & print(n-1))
CROSSREFS
Sequence in context: A374450 A210398 A278366 * A017775 A017722 A263508
KEYWORD
nonn,hard,more
AUTHOR
M. F. Hasler, Jan 25 2008
EXTENSIONS
a(6)-a(8) from Amiram Eldar, Apr 08 2019
STATUS
approved