login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134615
Numbers (excluding primes and powers of primes) such that the root mean cube of their prime factors is a prime (where the root mean cube of c and d is ((c^3+d^3)/2)^(1/3)).
3
707265, 1922816, 2284389, 12023505, 14689836, 21150800, 29444140, 30682000, 36533504, 39372480, 46309837, 52163097, 67303740, 73558065, 85751055, 107366283, 115291904, 161976045, 190384425, 204399585, 218317275, 231443940, 274960400, 286618640
OFFSET
1,1
COMMENTS
The prime factors are taken with multiplicity.
Numbers included in A134612, but not in A025475.
a(1) = 707265 is the minimal number with this property. a(3) = 2284389 is the greatest such number < 10^7.
LINKS
EXAMPLE
a(1) = 707265, since 707265 = 3*3*3*5*13*13*31 and ((3*3^3+5^3+2*13^3+31^3)/7)^(1/3) = 4913^(1/3) = 17.
PROG
(PARI) isok(n) = {if (omega(n) == 1, return (0)); f = factor(n); s = sum(i=1, #f~, f[i, 2]*f[i, 1]^3); s = s/bigomega(n); if (type(s) != "t_INT", return (0)); if (! ispower(s, 3, &p), return (0)); isprime(p); } \\ Michel Marcus, Nov 03 2013
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Nov 11 2007
EXTENSIONS
More terms and minor edits by Hieronymus Fischer, May 06 2013, May 30 2013
STATUS
approved