login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134613
Numbers such that the root mean cube of their prime factors is a nonprime integer (where the root mean cube of c and d is ((c^3+d^3)/2)^(1/3)).
7
1, 1512, 337365, 375360, 523809, 1177176, 1255254, 1380918, 1549431, 2277345, 2286144, 2816883, 3320713, 3340428, 3838185, 4378333, 6726969, 7043655, 8311212, 10281284, 10323390, 10666227, 10708544, 12333468, 14185724, 15883803, 21432000, 25760763, 27111825
OFFSET
1,2
COMMENTS
The prime factors are taken with multiplicity.
Numbers included in A134611, but not in A134612.
For n > 1, also numbers included in A134614, but not in A134615; a(2) = 1512 is the minimal number with this property.
No prime number and no power (> 1) of a prime number can be a term.
LINKS
EXAMPLE
a(1) = 1, since 1 has no prime factors, and so the cube mean is zero (by definition of empty sums).
a(2) = 1512, since 1512 = 2*2*2*3*3*3*7 and ((3*2^3+3*3^3+7^3)/7)^(1/3) = 64^(1/3) = 4.
PROG
(PARI) isok(n) = if (n==1, return(1)); sc = 0; nb = 0; f = factor(n); for (i=1, #f~, sc += f[i, 2]*f[i, 1]^3; nb += f[i, 2]; ); return (type(quot = sc/nb) == "t_INT" && ispower(quot, 3, &cr) && (! isprime(cr))); \\ Michel Marcus, Jul 15 2013; corrected Jun 13 2022
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Nov 11 2007
EXTENSIONS
Extended, edited and added initial term a(1) = 1 by Hieronymus Fischer, May 30 2013
STATUS
approved