OFFSET
1,1
COMMENTS
For k != 0, the quintic polynomials of the form x^5 + 5*(5*k^2-1)*x + 4*(5*k^2-1) have Galois group A5 (order 60) over rational numbers.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(-4-7*x+x^2)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(5))*cot(Pi/sqrt(5)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(5))*csc(Pi/sqrt(5)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(5))*csc(Pi/sqrt(5)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(5))*sin(sqrt(2/5)*Pi)/sqrt(2). (End)
MATHEMATICA
Table[5n^2 - 1, {n, 1, 50}]
CoefficientList[Series[(4+7*x-x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 09 2012 *)
PROG
(Magma) [5*n^2-1: n in [1..50]]; // Vincenzo Librandi, Jul 09 2012
(PARI) a(n)=5*n^2-1 \\ Charles R Greathouse IV, Jul 01 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 30 2007
STATUS
approved