login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134538 a(n) = 5*n^2 - 1. 5
4, 19, 44, 79, 124, 179, 244, 319, 404, 499, 604, 719, 844, 979, 1124, 1279, 1444, 1619, 1804, 1999, 2204, 2419, 2644, 2879, 3124, 3379, 3644, 3919, 4204, 4499, 4804, 5119, 5444, 5779, 6124, 6479, 6844, 7219, 7604, 7999, 8404, 8819, 9244, 9679, 10124 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For k != 0, the quintic polynomials of the form x^5 + 5*(5*k^2-1)*x + 4*(5*k^2-1) have Galois group A5 (order 60) over rational numbers.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(-4-7*x+x^2)/(-1+x)^3. - R. J. Mathar, Nov 14 2007

From Amiram Eldar, Feb 04 2021: (Start)

Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(5))*cot(Pi/sqrt(5)))/2.

Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(5))*csc(Pi/sqrt(5)) - 1)/2.

Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(5))*csc(Pi/sqrt(5)).

Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(5))*sin(sqrt(2/5)*Pi)/sqrt(2). (End)

MATHEMATICA

Table[5n^2 - 1, {n, 1, 50}]

CoefficientList[Series[(4+7*x-x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 09 2012 *)

PROG

(MAGMA) [5*n^2-1: n in [1..50]]; // Vincenzo Librandi, Jul 09 2012

(PARI) a(n)=5*n^2-1 \\ Charles R Greathouse IV, Jul 01 2013

CROSSREFS

Sequence in context: A031291 A210374 A283394 * A338711 A024013 A067981

Adjacent sequences:  A134535 A134536 A134537 * A134539 A134540 A134541

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Oct 30 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 10 01:09 EDT 2021. Contains 343747 sequences. (Running on oeis4.)