login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134415
Expansion of phi(x) / f(-x)^6 in powers of x where phi(), f() are Ramanujan theta functions..
3
1, 8, 39, 152, 513, 1560, 4382, 11552, 28899, 69168, 159372, 355224, 768885, 1621296, 3339201, 6732232, 13311450, 25854744, 49398043, 92953016, 172451760, 315744072, 570997539, 1020691248, 1804730732, 3158323272, 5473566645, 9398873032, 15998363307, 27005721648
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/4) * eta(q^2)^5 / (eta(q)^8 * eta(q^4)^2) in powers of q.
Euler transform of period 4 sequence [ 8, 3, 8, 5, ...].
G.f.: Product_{k>0} (1 + x^k)^3 / ((1 - x^k)^5 * (1 + x^(2*k))^2).
a(n) = A134414(4*n - 1).
a(n) ~ exp(2*Pi*sqrt(n)) / (16*n^2). - Vaclav Kotesovec, Sep 08 2015
Convolution inverse of A244276. - Michael Somos, Oct 25 2015
EXAMPLE
G.f. = 1 + 8*x + 39*x^2 + 152*x^3 + 513*x^4 + 1560*x^5 + 4382*x^6 + 11552*x^7 + ...
G.f. = 1/q + 8*q^3 + 39*q^7 + 152*q^11 + 513*q^15 + 1560*q^19 + 4382*q^23 + ...
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 + x^k)^3 / ((1 - x^k)^5 * (1 + x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] / QPochhammer[ x]^6, {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^8 * eta(x^4 + A)^2), n))};
CROSSREFS
Cf. A134414.
Sequence in context: A063002 A055581 A297017 * A097787 A215731 A144414
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 26 2007
STATUS
approved