Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Sep 08 2022 08:45:32
%S 1,3,8,20,45,91,168,288,465,715,1056,1508,2093,2835,3760,4896,6273,
%T 7923,9880,12180,14861,17963,21528,25600,30225,35451,41328,47908,
%U 55245,63395,72416,82368,93313,105315,118440,132756,148333,165243,183560,203360,224721,247723,272448
%N Row sums of triangle A134392.
%C Binomial transform of [1, 2, 3, 4, 2, 0, 0, 0, ...].
%C The Kn4 triangle sums of A139600 are given by this sequence. For the definitions of the Kn4 and other triangle sums see A180662. - _Johannes W. Meijer_, Apr 29 2011
%H Vincenzo Librandi, <a href="/A134393/b134393.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F From _R. J. Mathar_, Jun 08 2008: (Start)
%F O.g.f.: x*(1-2*x+3*x^2)/(1-x)^5.
%F a(n) = A014628(n+1). (End)
%F a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 3*binomial(n+1,4). - _Johannes W. Meijer_, Apr 29 2011, corrected by _Eric Rowland_, Aug 16 2017
%F a(n) = n*(n + 1)*(n^2 - 3*n + 8)/12. - _Johannes W. Meijer_, Apr 29 2011, corrected by _Eric Rowland_, Aug 16 2017
%e a(4) = 20 = (1, 3, 3, 1) dot (1, 2, 3, 4) = (1 + 6 + 9 + 4).
%e a(4) = sum of row 4 terms of triangle A134392: (8 + 7 + 4 + 1).
%t Table[(n^4 - 2*n^3 + 5*n^2 + 8*n)/12, {n, 1, 40}] (* _Vincenzo Librandi_, Feb 04 2013 *)
%t LinearRecurrence[{5,-10,10,-5,1},{1,3,8,20,45},50] (* _Harvey P. Dale_, May 28 2018 *)
%o (Magma) [Binomial(n+3, 4)-2*Binomial(n+2, 4)+ 3*Binomial(n+1, 4): n in [1..40]]; // _Vincenzo Librandi_, Feb 04 2013
%o (PARI) x='x+O('x^99); Vec(x*(1-2*x+3*x^2)/(1-x)^5) \\ _Altug Alkan_, Aug 16 2017
%Y Cf. A000332, A014628, A134392.
%K nonn,easy
%O 1,2
%A _Gary W. Adamson_, Oct 23 2007