login
Binomial transform of [1, 5, -1, 5, -1, 5, ...]. Inverse binomial transform of A134350.
1

%I #16 Jul 03 2023 08:49:52

%S 1,6,10,18,34,66,130,258,514,1026,2050,4098,8194,16386,32770,65538,

%T 131074,262146,524290,1048578,2097154,4194306,8388610,16777218,

%U 33554434,67108866,134217730,268435458,536870914,1073741826,2147483650

%N Binomial transform of [1, 5, -1, 5, -1, 5, ...]. Inverse binomial transform of A134350.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3, -2).

%F a(n) = 2 + 2^(n+1) for n >= 2; a(1)=1. - _Emeric Deutsch_, Oct 24 2007

%F O.g.f.: (-1-3*x+6*x^2)/((1-x)*(-1+2*x)). - _R. J. Mathar_, Apr 02 2008

%e a(4) = 18 = (1, 3, 3, 1) dot (1, 5, -1, 5) = (1 + 15 - 3 + 5).

%p 1,seq(2^(n+1)+2,n=1..25); # _Emeric Deutsch_, Oct 24 2007

%Y Cf. A134350.

%Y Essentially the same as A133140, A089985, A052548.

%K nonn

%O 1,2

%A _Gary W. Adamson_, Oct 21 2007

%E More terms from _Emeric Deutsch_, Oct 24 2007

%E More terms from _R. J. Mathar_, Apr 02 2008