login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of certain constants c_n = A180609(n)/n! related to Hurwitz numbers.
2

%I #25 Jul 26 2018 11:31:29

%S 1,-1,1,-2,11,-3,-11,29,493,-2711,-12406,2636317,-10597579,-439018457,

%T 1165403153,118734633647,-105428488301,-4070802683898,

%U 1695077946695371,56532812889378221,-252968859037883917,-425882179787933647571,123624959518930226565553,32729394708071881944913,-5814212300444136523052695

%N Numerators of certain constants c_n = A180609(n)/n! related to Hurwitz numbers.

%C Manetti-Ricciardi refer to the c_n as Koszul numbers.

%H M Manetti, G Ricciardi, <a href="http://arxiv.org/abs/1509.09032">Universal Lie formulas for higher antibrackets</a>, arXiv preprint arXiv:1509.09032 [math.QA], 2015-2016.

%H S. Shadrin and D. Zvonkine, <a href="http://dx.doi.org/10.1307/mmj/1177681994">Changes of variables in ELSV-type formulas</a>, Michigan Mathematical Journal, vol. 55 (2007), 209-228.

%H D. Zvonkine, <a href="http://www.math.jussieu.fr/~zvonkine/">Home Page</a>

%F Manetti-Ricciardi Theorem 4.4 give a recurrence for the c_n in terms of Stirling numbers.

%e The fractions are 1, -1/2, 1/2, -2/3, 11/12, -3/4, -11/6, 29/4, 493/12, -2711/6, -12406/15, 2636317/60, -10597579/120, -439018457/60, 1165403153/20, 118734633647/60, ...

%t K[1] = 1;

%t K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];

%t Table[Numerator[K[n]], {n, 1, 25}] (* _Jean-François Alcover_, Jul 26 2018 *)

%Y Cf. A134243, A180609.

%K sign,frac,easy

%O 1,4

%A _N. J. A. Sloane_, Jan 30 2008

%E More terms from Manetti-Ricciardi added by _N. J. A. Sloane_, May 25 2016