login
A134207
a(0) = 2; for n > 0, a(n) = the smallest prime which is > a(n-1) such that a(n-1) + a(n) is a multiple of n.
4
2, 3, 5, 7, 13, 17, 19, 23, 41, 67, 73, 103, 113, 173, 191, 199, 233, 277, 281, 479, 521, 571, 617, 809, 823, 827, 863, 919, 929, 1217, 1303, 1487, 1489, 1613, 1753, 2027, 2113, 2179, 2267, 2647, 2713, 3109, 3191, 3259, 3517, 3593, 3767, 3847, 3881, 4057
OFFSET
0,1
LINKS
EXAMPLE
The primes that are > a(8)=41 form the sequence 43,47,53,59,61,67,71,... Of these, 67 is the smallest that when added to a(8)=41 gets a multiple of 9 -- 41+67 = 108 = 9*12. (41+p is not divisible by 9 for p = any prime which is > 41 and is < 67.) So a(9) = 67.
MATHEMATICA
a = {2}; For[n = 1, n < 100, n++, i = 1; While[Not[Mod[a[[ -1]] + Prime[PrimePi[a[[ -1]]] + i], n] == 0], i++ ]; AppendTo[a, Prime[PrimePi[a[[ -1]]] + i]]]; a (* Stefan Steinerberger, Oct 17 2007 *)
PROG
(Sage)
def A134207(max) :
res = [2]; p = 3
for n in range(1, max+1) :
while (res[n-1] + p) % n != 0 : p = next_prime(p)
res.append(p); p = next_prime(p)
return res # Eric M. Schmidt, May 23 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 14 2007
EXTENSIONS
More terms from Stefan Steinerberger, Oct 17 2007
STATUS
approved