login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134132
Expansion of chi(-x^3)^2 / (chi(-x) * chi(-x^9)) in power of x where chi() is a Ramanujan theta function.
2
1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 2, 3, 3, 3, 2, 2, 3, 5, 6, 5, 4, 4, 6, 9, 10, 9, 8, 8, 11, 14, 16, 15, 13, 14, 18, 24, 26, 25, 22, 23, 29, 36, 40, 38, 36, 38, 46, 56, 61, 60, 56, 59, 70, 84, 92, 90, 86, 90, 106, 125, 135, 134, 130, 136, 157, 181, 196, 195
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/6) * eta(q^2) * eta(q^3)^2 * eta(q^18) / (eta(q) * eta(q^6)^2 * eta(q^9)) in powers of q.
Euler transform of period 18 sequence [ 1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, ...].
Given g.f. A(x) then B(q) = A(q^6) * q satisfies 0 = f(B(q), B(q^2), B(q^4) ) where f(u, v, w) = (u^2 + v) * w^2 - (u^2 - v) * v.
Given g.f. A(x) then B(q) = A(q^3)^2 * q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u - v^2) * (u^2 - v) * (1 + u * v) - (2 * u * v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (648 t)) = 1 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134131.
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(9*k)) / (1 + x^(3*k))^2.
-a(n) = A112178(3*n + 1). Convolution inverse of A134131.
a(n) ~ exp(2*Pi*sqrt(n/3)/3) / (2 * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x + x^2 + x^5 + x^6 + 2*x^7 + x^8 + x^9 + x^10 + 2*x^11 + 3*x^12 + ...
G.f. = q + q^7 + q^13 + q^31 + q^37 + 2*q^43 + q^49 + q^55 + q^61 + 2*q^67 + ...
MATHEMATICA
nmax = 80; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(9*k)) / (1 + x^(3*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ x^3, x^6]^2 QPochhammer[ -x^9, x^9] , {x, 0, n}]; (* Michael Somos, Oct 27 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^18 + A) / (eta(x + A) * eta(x^6 + A)^2 * eta(x^9 + A)), n))};
CROSSREFS
Sequence in context: A114731 A035389 A129176 * A308121 A030424 A216656
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 10 2007, Oct 21 2007
STATUS
approved