login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134008
a(n) = 1^n + 3^n + 5^n + 7^n + 9^n + 11^n.
1
6, 36, 286, 2556, 24310, 240276, 2437006, 25173996, 263567590, 2787694596, 29716508926, 318719062236, 3434943872470, 37162689280116, 403310957409646, 4387917394947276, 47836135613930950, 522357603781540836
OFFSET
0,1
LINKS
T. A. Gulliver, Divisibility of sums of powers of odd integers, Int. Math. For. 5 (2010) 3059-3066, eq. 6.
Index entries for linear recurrences with constant coefficients, signature (36,-505,3480,-12139,19524,-10395).
FORMULA
a(n) = 35*a(n-1) - 470*a(n-2) + 3010*a(n-3) - 9129*a(n-4) + 10395*a(n-5) - 3840.
G.f.: -2*(6*x-1)*(1627*x^4 - 1752*x^3 + 578*x^2 - 72*x + 3)/((-1+x)*(9*x-1)*(7*x-1)*(3*x-1)*(5*x-1)*(11*x-1)). - R. J. Mathar, Nov 14 2007
a(n) = 36*a(n-1) - 505*a(n-2) + 3480*a(n-3) - 12139*a(n-4) + 19524*a(n-5) - 10395*a(n-6); a(0)=6, a(1)=36, a(2)=286, a(3)=2556, a(4)=24310, a(5)=240276. - Harvey P. Dale, Apr 20 2015
EXAMPLE
a(3)=286 because 1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2 = 286.
MATHEMATICA
Table[1^n+3^n+5^n+7^n+9^n+11^n, {n, 0, 30}]
Join[{6}, Table[Total[Range[1, 11, 2]^n], {n, 20}]] (* or *) LinearRecurrence[ {36, -505, 3480, -12139, 19524, -10395}, {6, 36, 286, 2556, 24310, 240276}, 20] (* Harvey P. Dale, Apr 20 2015 *)
PROG
(Magma) [1^n + 3^n + 5^n + 7^n + 9^n + 11^n: n in [0..20]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 01 2007
STATUS
approved