login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1^n + 3^n + 5^n + 7^n + 9^n + 11^n.
1

%I #21 Sep 08 2022 08:45:32

%S 6,36,286,2556,24310,240276,2437006,25173996,263567590,2787694596,

%T 29716508926,318719062236,3434943872470,37162689280116,

%U 403310957409646,4387917394947276,47836135613930950,522357603781540836

%N a(n) = 1^n + 3^n + 5^n + 7^n + 9^n + 11^n.

%H Vincenzo Librandi, <a href="/A134008/b134008.txt">Table of n, a(n) for n = 0..300</a>

%H T. A. Gulliver, <a href="http://www.m-hikari.com/imf-2010/61-64-2010/index.html">Divisibility of sums of powers of odd integers</a>, Int. Math. For. 5 (2010) 3059-3066, eq. 6.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (36,-505,3480,-12139,19524,-10395).

%F a(n) = 35*a(n-1) - 470*a(n-2) + 3010*a(n-3) - 9129*a(n-4) + 10395*a(n-5) - 3840.

%F G.f.: -2*(6*x-1)*(1627*x^4 - 1752*x^3 + 578*x^2 - 72*x + 3)/((-1+x)*(9*x-1)*(7*x-1)*(3*x-1)*(5*x-1)*(11*x-1)). - _R. J. Mathar_, Nov 14 2007

%F a(n) = 36*a(n-1) - 505*a(n-2) + 3480*a(n-3) - 12139*a(n-4) + 19524*a(n-5) - 10395*a(n-6); a(0)=6, a(1)=36, a(2)=286, a(3)=2556, a(4)=24310, a(5)=240276. - _Harvey P. Dale_, Apr 20 2015

%e a(3)=286 because 1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2 = 286.

%t Table[1^n+3^n+5^n+7^n+9^n+11^n,{n,0,30}]

%t Join[{6},Table[Total[Range[1,11,2]^n],{n,20}]] (* or *) LinearRecurrence[ {36,-505,3480,-12139,19524,-10395},{6,36,286,2556,24310,240276},20] (* _Harvey P. Dale_, Apr 20 2015 *)

%o (Magma) [1^n + 3^n + 5^n + 7^n + 9^n + 11^n: n in [0..20]]; // _Vincenzo Librandi_, Jun 20 2011

%Y Cf. A034472, A074507, A134006, A134007.

%K nonn

%O 0,1

%A _Artur Jasinski_, Oct 01 2007