login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133886
a(n) = binomial(n+6,n) mod 6.
6
1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 3, 3, 0, 0, 0, 4, 4, 4, 3, 3, 0, 0, 0, 0, 4, 4, 1, 3, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3
OFFSET
0,3
COMMENTS
Periodic with length 2*6^2 = 72.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1).
FORMULA
a(n) = binomial(n+6,6) mod 6.
G.f.: g(x) = (1+x+4*x^2-6*x^9-6*x^56+4*x^63+x^64+x^65+3*x^8*(1+x)(1-x^56)/(1-x^8)+4*x^9(1+x+x^2)(1-x^54)/(1-x^9))/(1-x^72).
a(n) = a(n-1)-a(n-2)+a(n-8)+a(n-11)-a(n-17)-a(n-20)-a(n-24)+a(n-25)+a(n-29)+ a(n-32)- a(n-38)-a(n-41)+a(n-47)-a(n-48)+a(n-49). - Harvey P. Dale, May 04 2013
MAPLE
A133886:=n->binomial(n+6, 6) mod 6; seq(A133886(n), n=0..100); # Wesley Ivan Hurt, Apr 30 2014
MATHEMATICA
Table[Mod[Binomial[n+6, n], 6], {n, 0, 110}] (* Harvey P. Dale, May 04 2013 *)
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Oct 10 2007
STATUS
approved