OFFSET
1,12
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..5091
P. Heideman and E. Hogan, A New Family of Somos-Like Recurrences, arXiv:0709.2529 [math.CO], 2007-2009.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,94,0,0,0,0,0,0,0,0,0,-94,0,0,0,0,0,0,0,0,0,1).
FORMULA
Sequence also generated by the linear recurrence 94*(u(n-10)-u(n-20))+u(n-30) with the initial 30 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 -93*x^10 -91*x^11 -89*x^12 -87*x^13 -85*x^14 -83*x^15 -79*x^16 -71*x^17 -59*x^18 -43*x^19 +71*x^20 +51*x^21 +35*x^22 +23*x^23 +15*x^24 +11*x^25 +9*x^26 +7*x^27 +5*x^28 +3*x^29) / ((1 -x)*(1 +x)*(1 -x +x^2 -x^3 +x^4)*(1 +x +x^2 +x^3 +x^4)*(1 -93*x^10 +x^20)). - Colin Barker, Jul 18 2016
MAPLE
a := proc(n) option remember; if n<=11 then RETURN(1); else RETURN((a(n-1)*a(n-10)+a(n-5)+a(n-6))/a(n-11)); fi; end;
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 - 93 x^10 - 91 x^11 - 89 x^12 - 87 x^13 - 85 x^14 - 83 x^15 - 79 x^16 - 71 x^17 - 59 x^18 - 43 x^19 + 71 x^20 + 51 x^21 + 35 x^22 + 23 x^23 + 15 x^24 + 11 x^25 + 9 x^26 + 7 x^27 + 5 x^28 + 3 x^29)/((1 - x) (1 + x) (1 - x + x^2 - x^3 + x^4) (1 + x + x^2 + x^3 + x^4) (1 - 93 x^10 + x^20)), {x, 0, 47}], x] (* Michael De Vlieger, Jul 18 2016 *)
PROG
(PARI) a(k=11, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1; ); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1]; ); for (i=1, n, print1(vds[i], ", "); ); } \\ Michel Marcus, Nov 01 2012
(PARI) Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 -93*x^10 -91*x^11 -89*x^12 -87*x^13 -85*x^14 -83*x^15 -79*x^16 -71*x^17 -59*x^18 -43*x^19 +71*x^20 +51*x^21 +35*x^22 +23*x^23 +15*x^24 +11*x^25 +9*x^26 +7*x^27 +5*x^28 +3*x^29) / ((1 -x)*(1 +x)*(1 -x +x^2 -x^3 +x^4)*(1 +x +x^2 +x^3 +x^4)*(1 -93*x^10 +x^20)) + O(x^60)) \\ Colin Barker, Jul 18 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Emilie Hogan, Sep 26 2007
STATUS
approved