login
A133732
2
1, 0, 1, 2, 4, 5, 10, 12, 20, 25, 41, 47, 76, 90, 129, 161, 230, 270, 384, 458, 615, 750, 1001, 1187, 1570, 1881, 2414, 2907, 3717, 4400, 5603, 6666, 8306, 9912, 12295, 14537, 17976, 21252, 25937, 30683, 37337, 43861, 53173, 62467, 75020, 88132
OFFSET
1,4
COMMENTS
A000041 = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...).
LINKS
Mircea Merca and Maxie D. Schmidt, Generating Special Arithmetic Functions by Lambert Series Factorizations, arXiv:1706.00393 [math.NT], 2017. See Conjecture 3.1.
Maxie Dion Schmidt, A catalog of interesting and useful Lambert series identities, arXiv:2004.02976 [math.NT], 2020.
FORMULA
Möbius transform of A000041, the partition numbers.
EXAMPLE
a(4) = 2 = (0, -1, 0, 1) dot (1, 1, 2, 3) = (0, -1, 0, 3).
MAPLE
read("transforms") : A000041 := proc(n) combinat[numbpart](n) ; end: a000041 := [seq(A000041(n), n=0..150)] ; a133732 := MOBIUS(a000041) ; # R. J. Mathar, Jan 19 2009
mob := (m, n) -> if irem(m, n) = 0 then numtheory:-mobius(m/n) else 0 fi:
A133732 := n -> add(mob(n, d)*combinat:-numbpart(d-1), d=1..n):
seq(A133732(n), n=1..46); # Peter Luschny, Jan 20 2018
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[n/#]*PartitionsP[#-1]&];
Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Jan 20 2018 *)
CROSSREFS
Cf. A054525.
Sequence in context: A022944 A370593 A241822 * A328221 A364913 A128215
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Sep 22 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 19 2009
Offset set to 1 by Peter Luschny, Jan 20 2018
STATUS
approved