login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133324 7-gonal numbers which are sum of 2 consecutive 7-gonal numbers. 5
1, 144841, 927821665, 222590743768705, 1425873367156486249, 342076743178546829707489, 2191277630703059899650524953, 525702444955366082679116505052393, 3367548455158599463971494297793284977, 807897836210987628258457093971387133310617 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

We write (5*p^2-3*p)/2 = (5*r^2-3*r)/2 + (5*(r+1)^2-3*(r+1))/2 ; X=10*p-3 and Y=10*r+2 satisfy the Diophantine equation X^2=2*Y^2+41.

Both bisections of the sequence satisfy the recurrence relation b(n+2) = 1536796802*b(n+1)-b(n)-441829080.

LINKS

Colin Barker, Table of n, a(n) for n = 1..218

Index entries for linear recurrences with constant coefficients, signature (1,1536796802,-1536796802,-1,1).

FORMULA

a(n) = a(n-1)+1536796802*a(n-2)-1536796802*a(n-3)-a(n-4)+a(n-5). - Colin Barker, Dec 07 2014

G.f.: -x*(697*x^4+167145360*x^3-609119978*x^2+144840*x+1) / ((x-1)*(x^2-39202*x+1)*(x^2+39202*x+1)). - Colin Barker, Dec 05 2014

EXAMPLE

a(2) = 2.5*241^2-1.5*241 = 144841 = 5*r^2+4*r+1 with r=170.

MAPLE

F:= gfun[rectoproc]({a(n) = a(n-1)+1536796802*a(n-2)-1536796802*a(n-3)-a(n-4)+a(n-5),

a(1)=1, a(2)=144841, a(3)=927821665, a(4)=222590743768705, a(5) = 1425873367156486249}, a(n), remember):

seq(F(n), n=1..20); # Robert Israel, Dec 07 2014

MATHEMATICA

LinearRecurrence[{1, 1536796802, -1536796802, -1, 1}, {1, 144841, 927821665, 222590743768705, 1425873367156486249}, 20] (* Harvey P. Dale, Dec 21 2016 *)

PROG

(PARI) Vec(-x*(697*x^4+167145360*x^3-609119978*x^2+144840*x+1) / ((x-1)*(x^2-39202*x+1)*(x^2+39202*x+1)) + O(x^100)) \\ Colin Barker, Dec 05 2014

CROSSREFS

Cf. A000566, A133327, A133328.

Sequence in context: A145742 A236995 A204641 * A209968 A233915 A237297

Adjacent sequences:  A133321 A133322 A133323 * A133325 A133326 A133327

KEYWORD

nonn,easy

AUTHOR

Richard Choulet, Oct 18 2007

EXTENSIONS

More terms from Colin Barker, Dec 05 2014

Edited by Michel Marcus and Colin Barker, Dec 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 17:43 EDT 2021. Contains 348233 sequences. (Running on oeis4.)