login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133267
Number of Lyndon words on {1, 2, 3} with an even number of 1's.
5
2, 1, 4, 8, 24, 56, 156, 400, 1092, 2928, 8052, 22080, 61320, 170664, 478288, 1344800, 3798240, 10760568, 30585828, 87166656, 249055976, 713197848, 2046590844, 5883926400, 16945772184, 48881973840, 141214767876, 408513980160
OFFSET
1,1
COMMENTS
A Lyndon word is the aperiodic necklace representative which is lexicographically earliest among its cyclic shifts. Thus we can apply the fixed density formulas: L_k(n,d)=sum L(n-d, n_1,..., n_(k-1)); n_1+...+n_(k-1)=d where L(n_0, n_1,...,n_(k-1))=(1/n)sum mu(j)*[(n/j)!/((n_0/j)!(n_1/j)!...(n_(k-1)/j)!)]; j|gcd(n_0, n_1,...,n_(k-1)). For this sequence, sum over n_0=even. Alternatively, a(n)=(sum mu(d)*3^(n/d)/n; d|n) - (sum mu(d)*(3^(n/d)-1)/(2n); d|n, d odd).
REFERENCES
M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
F. Ruskey and J. Sawada, An Efficient Algorithm for Generating Necklaces with Fixed Density, SIAM J. Computing, 29 (1999) 671-684.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
M. Zabrocki, Course website
FORMULA
a(1)=2; for n>1, if n=2^k for some k, then a(n)=((3^(n/2)-1)^2)/(2n). Otherwise, if n=even then a(n)=sum mu(d)*(3^(n/d)-2*3^(n/(2d))/(2n); d|n, d odd. If n=odd then a(n)=sum mu(d)*(3^(n/d)-1)/(2n); d|n, d odd.
EXAMPLE
For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only the first two and the last two have an even number of 1's. Thus a(3) = 4.
MAPLE
with(numtheory): a:= n-> add(mobius(d) *3^(n/d), d=divisors(n))/n -add(mobius(d) *(3^(n/d)-1), d=select(x-> irem(x, 2)=1, divisors(n)))/ (2*n): seq(a(n), n=1..30); # Alois P. Heinz, Jul 29 2011
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[#]*(3^(n/#) - (1/2)*Boole[OddQ[#]]*(3^(n/#)-1))&]/n; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
PROG
(PARI) a133267(n) = sumdiv(n, d, moebius(d)*3^(n/d)/n - if (d%2, moebius(d)*(3^(n/d)-1)/(2*n))); \\ Michel Marcus, May 17 2018
CROSSREFS
Sequence in context: A378338 A319479 A303632 * A145864 A306392 A182739
KEYWORD
nonn
AUTHOR
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 03 2008
STATUS
approved