login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133230
Largest index-sum i+j such that prime(i)+prime(j)=4*n^2. a(0)=-1 to indicate that there is no such pair of primes.
2
-1, 2, 8, 15, 22, 31, 41, 53, 63, 77, 90, 105, 123, 138, 157, 175, 194, 215, 237, 259, 281, 306, 330, 355, 382, 410, 437, 468, 498, 527, 558, 588, 623, 656, 689, 727, 762, 797, 836, 872, 911, 952, 992, 1033, 1076, 1119, 1161, 1205, 1249, 1294, 1341, 1390, 1434, 1483, 1534, 1585, 1634, 1687, 1738, 1791, 1842, 1898
OFFSET
0,2
FORMULA
a(n)= max(i+j), 1<=i<=j: A000040(i)+A000040(j)=A016742(n). - R. J. Mathar, Apr 22 2008
MAPLE
A133230 := proc(n) local a016742, i, j, a ; a016742 := 4*n^2 ; a := -1 ; if n =0 then RETURN(-1) ; fi ; for i from 1 to numtheory[pi](a016742-1) do if isprime(a016742-ithprime(i)) then j := numtheory[pi](a016742-ithprime(i)) : a := max(a, i+j) ; fi ; od: RETURN(a) ; end: seq(A133230(n), n=0..80) ; # R. J. Mathar, Apr 22 2008
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Edited and extended by R. J. Mathar, Apr 22 2008
STATUS
approved