OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4).
FORMULA
Binomial transform of A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...).
For n>1, a(n) = 2^n + 3*n*2^(n-2). - R. J. Mathar, Apr 04 2012
EXAMPLE
a(3) = 26 = sum of row 3 of triangle A133085: (12 + 8, + 5 + 1).
a(3) = 26 = (1, 3, 3, 1) dot (1, 3, 3, 7) = (1 + 9 + 9 + 7).
MATHEMATICA
Join[{1, 4}, Table[2^n + 3*n*2^(n - 2), {n, 2, 50}]] (* G. C. Greubel, Oct 21 2017 *)
LinearRecurrence[{4, -4}, {1, 4, 10, 26}, 40] (* Harvey P. Dale, Jul 19 2020 *)
PROG
(PARI) concat([1, 4], for(n=2, 50, print1(2^n + 3*n*2^(n-2), ", "))) \\ G. C. Greubel, Oct 21 2017
(Magma) [1, 4] cat [2^n+3*n*2^(n-2): n in [2..30]]; // Vincenzo Librandi, Oct 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Sep 08 2007
STATUS
approved