login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133063
a(n) = 5*p^5 + 3*p^3 - 2*p^2, where p = prime(n).
1
176, 1278, 15950, 84966, 809006, 1862718, 7113446, 12400350, 32217158, 102627230, 143233206, 346869006, 579484406, 735277038, 1147032086, 2091418478, 3575230670, 4223655006, 6751518846, 9022210406, 10366514358, 15386748630, 19696904798, 27922396310, 42939420486, 52553573006
OFFSET
1,1
LINKS
FORMULA
a(n) = 5*(p(n))^5 + 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n).
EXAMPLE
a(4)=84966 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035+1029-98=84966.
MAPLE
a:= n-> (p-> (5*p^3+3*p-2)*p^2)(ithprime(n)):
seq(a(n), n=1..26); # Alois P. Heinz, Sep 23 2024
MATHEMATICA
Table[(Prime[n])^2*(5*Prime[n]^3 + 3*Prime[n] - 2), {n, 1, 50}] (* G. C. Greubel, Oct 09 2017 *)
PROG
(Magma) [5*p^5+3*p^3-2*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
(PARI) for(n=1, 25, print1(5*prime(n)^5 + 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ G. C. Greubel, Oct 09 2017
CROSSREFS
Cf. A000290, A000578, A000584, A045991, A133072. Prime numbers: A000040.
Sequence in context: A376405 A075291 A200835 * A264892 A223611 A290703
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 05 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 15 2010
STATUS
approved