login
A133063
a(n) = 5*p^5 + 3*p^3 - 2*p^2, where p = prime(n).
1
176, 1278, 15950, 84966, 809006, 1862718, 7113446, 12400350, 32217158, 102627230, 143233206, 346869006, 579484406, 735277038, 1147032086, 2091418478, 3575230670, 4223655006, 6751518846, 9022210406, 10366514358, 15386748630, 19696904798, 27922396310, 42939420486, 52553573006
OFFSET
1,1
LINKS
FORMULA
a(n) = 5*(p(n))^5 + 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n).
EXAMPLE
a(4)=84966 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035+1029-98=84966.
MAPLE
a:= n-> (p-> (5*p^3+3*p-2)*p^2)(ithprime(n)):
seq(a(n), n=1..26); # Alois P. Heinz, Sep 23 2024
MATHEMATICA
Table[(Prime[n])^2*(5*Prime[n]^3 + 3*Prime[n] - 2), {n, 1, 50}] (* G. C. Greubel, Oct 09 2017 *)
PROG
(Magma) [5*p^5+3*p^3-2*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
(PARI) for(n=1, 25, print1(5*prime(n)^5 + 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ G. C. Greubel, Oct 09 2017
CROSSREFS
Cf. A000290, A000578, A000584, A045991, A133072. Prime numbers: A000040.
Sequence in context: A376405 A075291 A200835 * A264892 A223611 A290703
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 05 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 15 2010
STATUS
approved