Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 14 2015 11:36:22
%S 1,2,1,12,6,1,240,72,12,1,12400,2240,240,20,1,1242720,157200,10800,
%T 600,30,1,202721064,20017032,1000440,36960,1260,42,1,48537596352,
%U 3986643136,159475008,4390400,101920,2352,56,1,15957585674496,1133413590528
%N Triangle T, read by rows, where g.f. of row n of T^n = (y + n*(n+1))^n for n>=0 and T^n denotes the n-th matrix power of T.
%C Pascal's triangle, B, obeys: the g.f. of row n of B^n = (y + n)^n for n>=0; this triangle has a similar property.
%F C(n,k) divides T(n,k) for n>=k>=0.
%e Triangle begins:
%e 1;
%e 2, 1;
%e 12, 6, 1;
%e 240, 72, 12, 1;
%e 12400, 2240, 240, 20, 1;
%e 1242720, 157200, 10800, 600, 30, 1;
%e 202721064, 20017032, 1000440, 36960, 1260, 42, 1;
%e 48537596352, 3986643136, 159475008, 4390400, 101920, 2352, 56, 1;
%e 15957585674496, 1133413590528, 38423427840, 860840064, 15140160, 241920, 4032, 72, 1; ...
%e Matrix square T^2 begins:
%e 1;
%e 4, 1;
%e 36, 12, 1; <== g.f. of row 2: (y + 2*3)^2
%e 768, 216, 24, 1;
%e 36960, 7360, 720, 40, 1;
%e 3445440, 489600, 36000, 1800, 60, 1; ...
%e Matrix cube T^3 begins:
%e 1;
%e 6, 1;
%e 72, 18, 1;
%e 1728, 432, 36, 1; <== g.f. of row 3: (y + 3*4)^3
%e 82320, 16800, 1440, 60, 1;
%e 7275360, 1126800, 82800, 3600, 90, 1; ...
%e Matrix 4th power T^4 begins:
%e 1;
%e 8, 1;
%e 120, 24, 1;
%e 3264, 720, 48, 1;
%e 160000, 32000, 2400, 80, 1; <== g.f. of row 4: (y + 4*5)^4
%e 13745280, 2241600, 158400, 6000, 120, 1; ...
%o (PARI) {T(n,k)=local(M=Mat(1),N,L);for(i=1,n,N=M; M=matrix(#N+1,#N+1,r,c,if(r>=c,if(r<=#N,(N^(#N))[r,c], polcoeff((x+(#M)*(#M+1))^(#M),c-1)))); L=sum(i=1,#M,-(M^0-M)^i/i);M=sum(i=0,#M,(L/#N)^i/i!););M[n+1,k+1]}
%Y Cf. A132876 (row sums); columns: A132877, A132878; A132879; variant: A132870.
%K nonn,tabl
%O 0,2
%A _Paul D. Hanna_, Sep 29 2007