login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132875
Triangle T, read by rows, where g.f. of row n of T^n = (y + n*(n+1))^n for n>=0 and T^n denotes the n-th matrix power of T.
6
1, 2, 1, 12, 6, 1, 240, 72, 12, 1, 12400, 2240, 240, 20, 1, 1242720, 157200, 10800, 600, 30, 1, 202721064, 20017032, 1000440, 36960, 1260, 42, 1, 48537596352, 3986643136, 159475008, 4390400, 101920, 2352, 56, 1, 15957585674496, 1133413590528
OFFSET
0,2
COMMENTS
Pascal's triangle, B, obeys: the g.f. of row n of B^n = (y + n)^n for n>=0; this triangle has a similar property.
FORMULA
C(n,k) divides T(n,k) for n>=k>=0.
EXAMPLE
Triangle begins:
1;
2, 1;
12, 6, 1;
240, 72, 12, 1;
12400, 2240, 240, 20, 1;
1242720, 157200, 10800, 600, 30, 1;
202721064, 20017032, 1000440, 36960, 1260, 42, 1;
48537596352, 3986643136, 159475008, 4390400, 101920, 2352, 56, 1;
15957585674496, 1133413590528, 38423427840, 860840064, 15140160, 241920, 4032, 72, 1; ...
Matrix square T^2 begins:
1;
4, 1;
36, 12, 1; <== g.f. of row 2: (y + 2*3)^2
768, 216, 24, 1;
36960, 7360, 720, 40, 1;
3445440, 489600, 36000, 1800, 60, 1; ...
Matrix cube T^3 begins:
1;
6, 1;
72, 18, 1;
1728, 432, 36, 1; <== g.f. of row 3: (y + 3*4)^3
82320, 16800, 1440, 60, 1;
7275360, 1126800, 82800, 3600, 90, 1; ...
Matrix 4th power T^4 begins:
1;
8, 1;
120, 24, 1;
3264, 720, 48, 1;
160000, 32000, 2400, 80, 1; <== g.f. of row 4: (y + 4*5)^4
13745280, 2241600, 158400, 6000, 120, 1; ...
PROG
(PARI) {T(n, k)=local(M=Mat(1), N, L); for(i=1, n, N=M; M=matrix(#N+1, #N+1, r, c, if(r>=c, if(r<=#N, (N^(#N))[r, c], polcoeff((x+(#M)*(#M+1))^(#M), c-1)))); L=sum(i=1, #M, -(M^0-M)^i/i); M=sum(i=0, #M, (L/#N)^i/i!); ); M[n+1, k+1]}
CROSSREFS
Cf. A132876 (row sums); columns: A132877, A132878; A132879; variant: A132870.
Sequence in context: A008285 A119274 A066991 * A050139 A010255 A372508
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 29 2007
STATUS
approved