login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sum of the squares of the coefficients of x^n in x^(n-2*k)/A(x^2)^(n-2*k+1), as k varies from 0 to floor(n/2), with a(0)=1, where A(x) is the g.f. of this sequence.
1

%I #5 Jun 14 2012 01:18:04

%S 1,1,2,5,11,18,30,45,80,147,330,882,1935,3298,4676,7613,18409,53724,

%T 141094,293407,473604,639418,1138534,3086050,9159520,23937239,

%U 54502764,106105954,167076383,237933308,491988696,1749801789,6074959380

%N a(n) = sum of the squares of the coefficients of x^n in x^(n-2*k)/A(x^2)^(n-2*k+1), as k varies from 0 to floor(n/2), with a(0)=1, where A(x) is the g.f. of this sequence.

%C The definition is a variation of the following property of the Catalan numbers: A000108(n) = Sum_{k=0..[n/2]} ( [x^n] (x*C(x^2))^(n-2*k+1) )^2, where C(x) is the g.f. of the Catalan numbers.

%H Paul D. Hanna, <a href="/A132455/b132455.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) = Sum_{k=0..[n/2]} ( [x^n] (x/A(x^2))^(n-2*k+1) )^2 for n>0 with a(0)=1.

%e a(n) is the sum of squares of coefficients in x^(n-2*k)/A(x^2)^(n-2*k+1):

%e a(2) = 2 = 1^2 + (-1)^2;

%e a(3) = 5 = 1^2 + (-2)^2;

%e a(4) = 11 = 1^2 + (-3)^2 + (-1)^2;

%e a(5) = 18 = 1^2 + (-4)^2 + (-1)^2;

%e a(6) = 30 = 1^2 + (-5)^2 + 0^2 + (-2)^2;

%e a(7) = 45 = 1^2 + (-6)^2 + 2^2 + (-2)^2;

%e a(8) = 80 = 1^2 + (-7)^2 + 5^2 + (-1)^2 + (-2)^2;

%e a(9) =147 = 1^2 + (-8)^2 + 9^2 + 0^2 + 1^2; ...

%e as can be seen from the initial coefficients in x^n/A(x^2)^n:

%e A(x)........: 1,1,2,5,11,18,30,45,80,147,...

%e x^1/A(x^2)^1: 1,_-1,__-1,___-2,___-2, ......

%e x^2/A(x^2)^2: __1,_-2,___-1,___-2,_____1,...

%e x^3/A(x^2)^3: ____1,__-3,____0,___-1, ......

%e x^4/A(x^2)^4: ______1,___-4,____2,_____0,...

%e x^5/A(x^2)^5: _________1,___-5,____5, ......

%e x^6/A(x^2)^6: ____________1,___-6,_____9,...

%e x^7/A(x^2)^7: _______________1,___-7, ......

%e x^8/A(x^2)^8: __________________1,____-8,...

%e x^9/A(x^2)^9: _____________________1, ......

%e x^10/A(x^2)^10: _______________________1,...

%o (PARI) {a(n)=if(n==0,1,sum(k=0,n\2,polcoeff(x^(n-2*k)*(sum(j=0,k,a(j)*x^(2*j)) +x*O(x^n))^(-n+2*k-1),n)^2))}

%Y Cf. A095892 (variant); A000108.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Aug 21 2007