login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132455
a(n) = sum of the squares of the coefficients of x^n in x^(n-2*k)/A(x^2)^(n-2*k+1), as k varies from 0 to floor(n/2), with a(0)=1, where A(x) is the g.f. of this sequence.
1
1, 1, 2, 5, 11, 18, 30, 45, 80, 147, 330, 882, 1935, 3298, 4676, 7613, 18409, 53724, 141094, 293407, 473604, 639418, 1138534, 3086050, 9159520, 23937239, 54502764, 106105954, 167076383, 237933308, 491988696, 1749801789, 6074959380
OFFSET
0,3
COMMENTS
The definition is a variation of the following property of the Catalan numbers: A000108(n) = Sum_{k=0..[n/2]} ( [x^n] (x*C(x^2))^(n-2*k+1) )^2, where C(x) is the g.f. of the Catalan numbers.
LINKS
FORMULA
a(n) = Sum_{k=0..[n/2]} ( [x^n] (x/A(x^2))^(n-2*k+1) )^2 for n>0 with a(0)=1.
EXAMPLE
a(n) is the sum of squares of coefficients in x^(n-2*k)/A(x^2)^(n-2*k+1):
a(2) = 2 = 1^2 + (-1)^2;
a(3) = 5 = 1^2 + (-2)^2;
a(4) = 11 = 1^2 + (-3)^2 + (-1)^2;
a(5) = 18 = 1^2 + (-4)^2 + (-1)^2;
a(6) = 30 = 1^2 + (-5)^2 + 0^2 + (-2)^2;
a(7) = 45 = 1^2 + (-6)^2 + 2^2 + (-2)^2;
a(8) = 80 = 1^2 + (-7)^2 + 5^2 + (-1)^2 + (-2)^2;
a(9) =147 = 1^2 + (-8)^2 + 9^2 + 0^2 + 1^2; ...
as can be seen from the initial coefficients in x^n/A(x^2)^n:
A(x)........: 1,1,2,5,11,18,30,45,80,147,...
x^1/A(x^2)^1: 1,_-1,__-1,___-2,___-2, ......
x^2/A(x^2)^2: __1,_-2,___-1,___-2,_____1,...
x^3/A(x^2)^3: ____1,__-3,____0,___-1, ......
x^4/A(x^2)^4: ______1,___-4,____2,_____0,...
x^5/A(x^2)^5: _________1,___-5,____5, ......
x^6/A(x^2)^6: ____________1,___-6,_____9,...
x^7/A(x^2)^7: _______________1,___-7, ......
x^8/A(x^2)^8: __________________1,____-8,...
x^9/A(x^2)^9: _____________________1, ......
x^10/A(x^2)^10: _______________________1,...
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, polcoeff(x^(n-2*k)*(sum(j=0, k, a(j)*x^(2*j)) +x*O(x^n))^(-n+2*k-1), n)^2))}
CROSSREFS
Cf. A095892 (variant); A000108.
Sequence in context: A264724 A298375 A260037 * A132459 A308517 A375714
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2007
STATUS
approved