login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A binomial recursion: a(n) = q(n) (see comment).
1

%I #23 Jun 06 2023 15:49:14

%S 0,1,3,15,97,767,7175,77497,949047,12993303,196655437,3260367539,

%T 58761008087,1143864229549,23917992791139,534642521054391,

%U 12722568903456817,321112383611040455,8568150193087139231,240986045600284560553,7125677277725450247087

%N A binomial recursion: a(n) = q(n) (see comment).

%C Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1} (-1 + binomial(n,k))*z(k), then z(n) = p(n)*x + q(n).

%H Vaclav Kotesovec, <a href="/A132437/b132437.txt">Table of n, a(n) for n = 1..400</a>

%F Limit_{n->oo} p(n)/q(n) = (Pi-2)/(4-Pi) = 1.329896183162743847239353...

%F From _Vaclav Kotesovec_, Nov 25 2020: (Start)

%F E.g.f.: -2-x + exp(x/2)*((4+Pi)/2 - 2*arcsin(exp(x/2)/sqrt(2))) / sqrt(2-exp(x)).

%F a(n) ~ (4 - Pi) * n! / (2*sqrt(Pi*n) * log(2)^(n + 1/2)).

%F a(n) ~ (4 - Pi) * n^n / (sqrt(2) * exp(n) * log(2)^(n + 1/2)). (End)

%t z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(-1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* _Vaclav Kotesovec_, Nov 25 2020 *)

%t Rest[CoefficientList[Series[-2 - x + E^(x/2)*((4 + Pi)/2 - 2*ArcSin[E^(x/2) / Sqrt[2]]) / Sqrt[2 - E^x], {x, 0, 20}], x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Nov 25 2020 *)

%o (PARI) r=1; s=-1; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);

%Y Cf. A135147, A135148, A135149, A135150, A135074, A135075.

%K nonn

%O 1,3

%A _Benoit Cloitre_, Nov 20 2007