login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131812
Sum of all n-digit Woodall numbers.
0
8, 86, 1437, 6654, 81917, 827389, 17956860, 157286397, 1434451965, 12884901885, 114353504253, 1005022347261, 8761733283837, 166026255794172, 1337006139375613, 11434920928870397, 97390341941886973, 1799188051134513148, 14231374822490767357, 119903836479112085501
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Woodall Number.
EXAMPLE
Sum of all 1-digit Woodall numbers is 1 + 7 = 8.
Sum of all 2-digit Woodall numbers is 23 + 63 = 86.
Sum of all 3-digit Woodall numbers is 159 + 383 + 895 = 1437.
MATHEMATICA
digNum[n_] := Length @ IntegerDigits[n]; woodall[n_] := n * 2^n - 1; digCount = 0; sum = 0; cumsum = {}; Do[w = woodall[n]; If[digNum[w] > digCount, digCount++; AppendTo[cumsum, sum]]; sum += w, {n, 1, 65}]; Differences[cumsum] (* Amiram Eldar, Nov 30 2019 *)
CROSSREFS
Cf. A003261.
Sequence in context: A268052 A268075 A202545 * A241259 A225314 A200767
KEYWORD
nonn,base,less
AUTHOR
Parthasarathy Nambi, Oct 23 2007
EXTENSIONS
More terms from Amiram Eldar, Nov 30 2019
STATUS
approved