login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = 2*A065941(n-1,k-1) - (-1)^(n+k).
3

%I #5 Sep 08 2018 16:07:28

%S 1,3,1,1,3,1,3,1,5,1,1,3,5,5,1,3,1,9,5,7,1,1,3,9,9,11,7,1,3,1,13,9,21,

%T 11,9,1,1,3,13,13,29,21,19,9,1,3,1,17,13,43,29,41,19,11,1,1,3,17,17,

%U 55,43,69,41,29,11,1,3,1,21,17,73,55,113,69,71,29,13,1

%N Triangle read by rows: T(n,k) = 2*A065941(n-1,k-1) - (-1)^(n+k).

%H Andrew Howroyd, <a href="/A131779/b131779.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)

%F T(n,k) = 2*binomial(n-1-floor(k/2), floor((k-1)/2)) - (-1)^(n+k). - _Andrew Howroyd_, Sep 08 2018

%e First few rows of the triangle are:

%e 1;

%e 3, 1;

%e 1, 3, 1;

%e 3, 1, 5, 1;

%e 1, 3, 5, 5, 1;

%e 3, 1, 9, 5, 7, 1;

%e 1, 3, 9, 9, 11, 7, 1;

%e ...

%o (PARI) T(n,k) = {if(k<=n, 2*binomial(n-1-k\2, (k-1)\2) - (-1)^(n+k), 0)} \\ _Andrew Howroyd_, Sep 08 2018

%Y Row sums are A131780.

%Y Cf. A065941.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Jul 14 2007

%E a(28)-a(29) corrected and terms a(56) and beyond from _Andrew Howroyd_, Sep 08 2018