This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131734 Hexaperiodic [0, 1, 0, 1, 0, -1]. 1
 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1). FORMULA a(n) = (1/45)*{-7*(n mod 6)+8*[(n+1) mod 6]+8*[(n+2) mod 6]-7*[(n+3) mod 6]+8*[(n+4) mod 6]-7*[(n+5) mod 6]}. - Paolo P. Lava, Oct 02 2007 From Wesley Ivan Hurt, Apr 06 2015: (Start) G.f.: x*(1+x^2-x^4)/(1-x^6). Recurrence: a(n) = a(n-6). a(n) = (1-(-1)^n)*(-1)^floor(2n/3)/2. abs(a(n)) = A000035(n). (End) EXAMPLE G.f. = x + x^3 - x^5 + x^7 + x^9 - x^11 + x^13 + x^15 - x^17 + x^19 + x^21 + ... MAPLE A131734:=n->(1-(-1)^n)*(-1)^floor(2*n/3)/2: seq(A131734(n), n=0..100); # Wesley Ivan Hurt, Apr 06 2015 MATHEMATICA CoefficientList[Series[x (1 + x^2 - x^4)/(1 - x^6), {x, 0, 100}], x] (* Wesley Ivan Hurt, Apr 06 2015 *) PROG (MAGMA) [(1-(-1)^n)*(-1)^Floor(2*n/3)/2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 06 2015 (PARI) {a(n) = [ 0, 1, 0, 1, 0, -1, 0, 1][n%6 + 1]}; /* Michael Somos, Nov 11 2015 */ CROSSREFS Cf. A000035 (absolute value). Sequence in context: A125122 A000035 A188510 * A134452 A073445 A285589 Adjacent sequences:  A131731 A131732 A131733 * A131735 A131736 A131737 KEYWORD sign,easy AUTHOR Paul Curtz, Sep 19 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 21:36 EST 2019. Contains 319336 sequences. (Running on oeis4.)