login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131428
a(n) = 2*C(n) - 1, where C(n) = A000108(n) are the Catalan numbers.
8
1, 1, 3, 9, 27, 83, 263, 857, 2859, 9723, 33591, 117571, 416023, 1485799, 5348879, 19389689, 70715339, 259289579, 955277399, 3534526379, 13128240839, 48932534039, 182965127279, 686119227299, 2579808294647, 9723892802903
OFFSET
0,3
COMMENTS
Starting (1, 3, 9, 27, 83, ...), = row sums of triangle A136522. - Gary W. Adamson, Jan 02 2008
Hankel transform is A171552. - Paul Barry, Dec 11 2009
Apparently, for n >= 1, the maximum peak height minus the maximum valley height summed over all Dyck n-paths (with max valley height deemed zero if no valleys). - David Scambler, Oct 05 2012
Apparently for n > 1 the number of fixed points in all Dyck (n-1)-paths. A fixed point occurs when a vertex of a Dyck k-path is also a vertex of the path U^kD^k. - David Scambler, May 01 2013
LINKS
FORMULA
Right border of triangle A131429.
From Emeric Deutsch, Jul 25 2007: (Start)
a(n) = 2*binomial(2*n,n)/(n+1) - 1.
G.f.: (1-sqrt(1-4*x))/x - 1/(1-x). (End)
(1, 3, 9, 27, 83, ...) = row sums of A118976. - Gary W. Adamson, Aug 31 2007
Row sums of triangle A131428 starting (1, 3, 9, 27, 83, ...). - Gary W. Adamson, Aug 31 2007
Starting with offset 1 = Narayana transform (A001263) of [1,2,2,2,...]. - Gary W. Adamson, Jul 29 2011
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +3*(-n+1)=0. - R. J. Mathar, Nov 22 2024
EXAMPLE
a(3) = 9 = 2*C(3) - 1 = 2*5 - 1, where C refers to the Catalan numbers, A000108.
MAPLE
seq(2*binomial(2*n, n)/(n+1)-1, n=0..25); # Emeric Deutsch, Jul 25 2007
MATHEMATICA
2CatalanNumber[Range[0, 25]]-1 (* Harvey P. Dale, Apr 17 2011 *)
PROG
(PARI) vector(25, n, n--; 2*binomial(2*n, n)/(n+1) - 1) \\ G. C. Greubel, Aug 12 2019
(Magma) [2*Catalan(n) -1: n in [0..25]]; // G. C. Greubel, Aug 12 2019
(Sage) [2*catalan_number(n) -1 for n in (0..25)] # G. C. Greubel, Aug 12 2019
(GAP) List([0..25], n-> 2*Binomial(2*n, n)/(n+1) - 1); # G. C. Greubel, Aug 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 10 2007
EXTENSIONS
More terms from Emeric Deutsch, Jul 25 2007
STATUS
approved