login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131311
Number of labeled 2-arch graphs on n nodes.
4
0, 1, 1, 6, 100, 3285, 177471, 14188888, 1569185136, 229087571625, 42657089362525, 9865968972312816, 2775121127493066144, 933088633696985015341, 369664023805893580624875, 170462028446539785915840000, 90535875809937268263059201536, 54880459059177867635557856462097
OFFSET
1,4
LINKS
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
Saverio Caminiti and Emanuele G. Fusco, On the Number of Labeled k-arch Graphs, Journal of Integer Sequences, Vol 10 (2007), Article 07.7.5.
FORMULA
The number of labeled 2-arch graphs with n>3 nodes is given by f(n,2,n-2-1,0,2) where f is the recursive function described by the PARI/GP code attached below.
PROG
(PARI) f(n, k, i, u, j)={ local(s=0); if (i==1, binomial(n-u, j)*binomial(u, k-j), for (c=0, min(k, n-(i-1)-(u+j)), s+=f(n, k, i-1, u+j, c) ); binomial(n-u, j)*binomial(u, k-j)*s ) }
(PARI) \\ faster version with memoization.
a(n, k=2)={ my(Cache=Map());
my(f(n, k, i, u, j)=my(hk=Vecsmall([n, k, i, u, j]), z);
if(!mapisdefined(Cache, hk, &z),
z = binomial(n-u, j)*binomial(u, k-j)*if(i==1, 1, sum(c=0, min(k, n-(i-1)-(u+j)), self()(n, k, i-1, u+j, c) ));
mapput(Cache, hk, z)); z);
if(n>k+1, f(n, k, n-k-1, 0, k), n>=k)
} \\ Andrew Howroyd, Nov 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Saverio Caminiti and Emanuele G. Fusco (fusco(AT)di.uniroma1.it), Sep 18 2007
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Nov 07 2019
STATUS
approved