login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131310
O.g.f. A(x) satisfies: [x^n] exp(x*A(x)) = [x^n] A(x) / n!.
0
1, 1, 3, 25, 697, 87261, 63362851, 319794398533, 12896670350677905, 4680059818474453354777, 16983047870459137946598471811, 677909112049327323648624151866814641
OFFSET
0,3
FORMULA
a(n+1) = n!*Sum_{k=0..n} (k+1)/(n-k)!*a(k)*a(n-k). - Vladeta Jovovic, Jul 08 2008
EXAMPLE
O.g.f.: A(x) = 1 + x + 3*x^2 + 25*x^3 + 697*x^4 + 87261*x^5 + 63362851*x^6 +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 697*x^4/4! + 87261*x^5/5! + 63362851*x^6/6! +...
PROG
(PARI) {a(n)=local(E=1+x+x*O(x^n), F); for(j=0, n, F=exp(x*E); E=sum(i=0, n, polcoeff(F, i)*i!*x^i)); polcoeff(E, n)}
CROSSREFS
Sequence in context: A248417 A355123 A306795 * A362657 A365359 A062411
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2007
STATUS
approved