login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131137
Denominator of (exponential) expansion of log((2*x/3-1)/(x-1)).
3
1, 3, 9, 27, 27, 81, 243, 243, 729, 2187, 729, 2187, 6561, 6561, 19683, 59049, 59049, 177147, 531441, 177147, 531441, 1594323, 1594323, 4782969, 14348907, 14348907, 43046721, 129140163, 14348907, 43046721, 129140163, 129140163, 387420489
OFFSET
0,2
COMMENTS
a(n) = 3^A131138(n).
Also, starting at second term, denominator of (1-(2/3)^n)*(n-1)!;
Conjecture: starting at third term, also equals the denominator of polylog(-n,1/4)/4. - Wouter Meeussen, Feb 13 2014
LINKS
MATHEMATICA
Denominator[CoefficientList[Series[Log[(2 x/3 - 1)/(x - 1)], {x, 0, 32}], x] Range[0, 32]!]; (* or *) Prepend[Table[Denominator[(1 - (2/3)^n) (n - 1)!], {n, 32}], 1]; (* or *) Join[{1, 3}, Table[Denominator[PolyLog[-n, 1/4]/4 ], {n, 31}]] (* Wouter Meeussen, Feb 13 2014 *)
PROG
(PARI) a(n)=if(n<4, 3^n, denominator(polylog(1-n, 1/4)/4)) \\ Charles R Greathouse IV, Jul 15 2014
CROSSREFS
Cf. A131136.
Sequence in context: A168427 A070344 A070357 * A370871 A061948 A018644
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jun 17 2007
STATUS
approved