login
A131137
Denominator of (exponential) expansion of log((2*x/3-1)/(x-1)).
3
1, 3, 9, 27, 27, 81, 243, 243, 729, 2187, 729, 2187, 6561, 6561, 19683, 59049, 59049, 177147, 531441, 177147, 531441, 1594323, 1594323, 4782969, 14348907, 14348907, 43046721, 129140163, 14348907, 43046721, 129140163, 129140163, 387420489
OFFSET
0,2
COMMENTS
a(n) = 3^A131138(n).
Also, starting at second term, denominator of (1-(2/3)^n)*(n-1)!;
Conjecture: starting at third term, also equals the denominator of polylog(-n,1/4)/4. - Wouter Meeussen, Feb 13 2014
LINKS
MATHEMATICA
Denominator[CoefficientList[Series[Log[(2 x/3 - 1)/(x - 1)], {x, 0, 32}], x] Range[0, 32]!]; (* or *) Prepend[Table[Denominator[(1 - (2/3)^n) (n - 1)!], {n, 32}], 1]; (* or *) Join[{1, 3}, Table[Denominator[PolyLog[-n, 1/4]/4 ], {n, 31}]] (* Wouter Meeussen, Feb 13 2014 *)
PROG
(PARI) a(n)=if(n<4, 3^n, denominator(polylog(1-n, 1/4)/4)) \\ Charles R Greathouse IV, Jul 15 2014
CROSSREFS
Cf. A131136.
Sequence in context: A168427 A070344 A070357 * A370871 A061948 A018644
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jun 17 2007
STATUS
approved