Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:45:30
%S 5,7,19,259,65539,4294967299,18446744073709551619,
%T 340282366920938463463374607431768211459,
%U 115792089237316195423570985008687907853269984665640564039457584007913129639939
%N Fermat numbers of order 3 or F(n,3) = 2^(2^n)+3.
%C This is equivalent to F(n)+2 or 2^(2^n)+ 1 + 2. Conjecture: If n is odd, 7 is a divisor of F(n,3).
%C The conjecture is true: the order of 2 mod 7 is 3, and if n is odd then 2^n == 2 mod 3 so 2^(2^n) + 3 == 2^2 + 3 == 0 mod 7. - _Robert Israel_, Nov 20 2014
%H Vincenzo Librandi, <a href="/A130729/b130729.txt">Table of n, a(n) for n = 0..11</a>
%H Tigran Hakobyan, <a href="http://arxiv.org/abs/1601.04946">On the unboundedness of common divisors of distinct terms of the sequence a(n)=2^2^n+d for d>1</a>, arXiv:1601.04946 [math.NT], 2016.
%F F(n,m): The n-th Fermat number of order m = 2^(2^n)+ m. The traditional Fermat numbers are F(n,1) or Fermat numbers of order 1.
%t Table[(2^(2^n) + 3), {n, 0, 15}] (* _Vincenzo Librandi_, Jan 09 2013 *)
%o (PARI) fplusm(n,m)= { local(x,y); for(x=0,n, y=2^(2^x)+m; print1(y",") ) }
%o (Magma) [2^(2^n) + 3: n in [0..11]]; // _Vincenzo Librandi_, Jan 09 2013
%Y Cf. A063486, A130730.
%K nonn
%O 0,1
%A _Cino Hilliard_, Jul 05 2007